Showing posts with label traps. Show all posts
Showing posts with label traps. Show all posts

Mar 3, 2022

[paper] Charge Trapping/Detrapping in Scaled MOSFETs

Ruben Asanovski, Pierpaolo Palestri*, and Luca Selmi
Importance of Charge Trapping/Detrapping Involving the Gate Electrode on the Noise Currents of Scaled MOSFETs
IEEE TED, Vol. 69, No. 3, March 2022 1313
DOI: 10.1109/TED.2022.3147158
  
 Università degli Studi di Modena e Reggio Emilia, Modena, Italy
*Università degli Studi di Udine, Udine, Italy

Abstract: Carrier trapping/detrapping from/to the gate into dielectric traps is often neglected when modeling noise in MOSFETs and, to the best of our knowledge, no systematic study of its impacts on scaled devices is available. In this article, we show that this trapping mechanism cannot be neglected in nowadays aggressively scaled gate dielectric thicknesses without causing errors up to several orders of magnitude in the estimation of the drain current noise. The noise generation mechanism is modeled analytically and then analyzed through the use of 2-D and 3-D TCAD simulations of scaled MOSFETs with different architectures and channel/gate-stack materials. The results provide new insights for technology and device designers, highlight the relevance of the choice of the gate metal work function (WF) and the role of valence band electron trapping at high gate voltages.
Fig: (a) FinFET with the single trap location highlighted. (b) Drain current noise comparison between TCAD simulations at VGS = 0.7 V, VDS = 25 mV and single trap located as in (a).





Mar 24, 2017

[paper] Pulsed I-V on TFETs: Modeling and Measurements

Pulsed I-V on TFETs: Modeling and Measurements
Quentin Smets, Anne Verhulst, Ji-Hong Kim, Jason P. Campbell, David Nminibapiel, Dmitry Veksler, Pragya Shrestha, Rahul Pandey, Eddy Simoen, David Gundlach, Curt Richter, Kin P. Cheung, Suman Datta, Anda Mocuta, Nadine Collaert, Aaron V.-Y. Thean, and Marc M. Heyns
in IEEE Transactions on Electron Devices, vol. 64, no. 4, pp. 1489-1497, April 2017
doi: 10.1109/TED.2017.2670660

Abstract: Most experimental reports of tunneling field-effect transistors show defect-related performance degradation. Charging of oxide traps causes Fermi-level pinning, and Shockley–Read–Hall (SRH)/trap-assisted tunneling (TAT) cause unwanted leakage current. In this paper, we study these degradation mechanisms using the pulsed I-V technique. Our simulations show pulsed I-V can fully suppress oxide trap charging, unlike SRH and TAT. We discuss several circuit-related pitfalls, and we demonstrate improved transfer characteristics by suppressing oxide trap charging using cryogenic pulsed I-V [read more...]